top of page

Acerca de

b.png

Thermal Phonon Physics Lab

Recent publications

Z. Zhang, et al., How coherence is governing diffuson heat transfer in amorphous solids. npj Compu. Mater. 8, 96 (2022).

Thermal transport in amorphous materials has remained one of the fundamental questions in solid state physics while involving a very large field of applications. Using a heat conduction theory incorporating coherence, we demonstrate that the strong phase correlation between local and non-propagating modes, commonly named diffusons in the terminology of amorphous systems, triggers the conduction of heat. By treating the thermal vibrations as collective excitations, the significant contribution of diffusons, predominantly relying on coherence, further reveals interesting temperature and length dependences of thermal conductivity. The propagation length of diffuson clusters is found to reach the micron, overpassing the one of propagons. The explored wavelike behavior of diffusons uncovers the unsolved physical picture of mode correlation in prevailing models and further provides an interpretation of their ability to transport heat. This work introduces a framework for understanding thermal vibrations and transport in amorphous materials, as well as an unexpected insight into the wave nature of thermal vibrations.

Z. Zhang, et al., Heat conduction theory including phonon coherence. PHYSICAL REVIEW LETTERS 128, 015901 (2022)

Phonon coherence revealed the wave nature of heat transport 

 

The phonon gas model fails to describe coherence and its impact on thermal transport. In this Letter, we propose a general heat conduction formalism supported by theoretical arguments and direct atomic simulations, which takes into account both the conventional phonon gas model and the wave nature of thermal phonons. Our theory and simulations reveal two distinct types of coherence, ie, intrinsic and mutual, appearing in two different temperature ranges. This contribution establishes a fundamental frame for understanding and quantifying the coherence of thermal phonons, which should have a general impact on the estimation of the thermal properties of solids.

All publications

Equal contribution: *, corresponding author: #.

2022 - now

[50] Z. Zhang#, Y. Guo, M. Bescond, J. Chen, M. Nomura, S. Volz, How coherence is governing diffuson heat transfer in amorphous solids. npj Compu. Mater. 8, 96 (2022).

[49] K Li, Y Cheng, H Wang, Y Guo, Z Zhang, M Bescond, M Nomura, S Volz, et al., Phonon resonant effect in silicon membranes with different crystallographic orientationsInt. J. Heat Mass Transf. 183, 122144 (2022).

[48] Z. Zhang#, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, Heat conduction theory including phonon coherence, Phys. Rev. Lett. 128, 015901 (2022)

[47] S. Jin, Z. Zhang#, Y. Guo, J. Chen, M. Nomura, and S. Volz, Optimization of Interfacial Thermal Transport in Si/Ge Heterostructure Driven by Machine Learning, Int. J. Heat Mass Transf. 182, 122014 (2022).

2021 - 2022

[46] Z. Zhang#, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, et al., Thermal self-synchronization of nano-objects, J. Appl. Phys. 130, 084301 (2021).

[45] Y. Guo, Z. Zhang, M. Bescond, S. Xiong, M. Wang, M. Nomura, and S. Volz, Size Effect on Phonon Hydrodynamics in Graphite Microstructures and Nanostructures, Phys. Rev. B 104, 075450 (2021).

[44] Z. Zhang#, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, Coherent Thermal Transport in Nano-Phononic Crystals: An Overview, APL Mater. 9, 81102 (2021). Editor Pick

[43] Z. Zhang, Y. Guo, M. Bescond, J. Chen, M. Nomura, and S. Volz, Generalized Decay Law for Particlelike and Wavelike Thermal Phonons, Phys. Rev. B 103, 184307 (2021).

[42] Y. Guo, Z. Zhang, M. Bescond, S. Xiong, M. Nomura, and S. Volz, Anharmonic Phonon-Phonon Scattering at Interface by Non-Equilibrium Green’s Function Formalism, Phys. Rev. B 103, 174306 (2021).

[41] H. Wang, Y. Cheng, Z. Fan, Y. Guo, Z. Zhang, M. Bescond, M. Nomura, T. Ala-Nissila, S. Volz, and S. Xiong, Anomalous Thermal Conductivity Enhancement in Low Dimensional Resonant Nanostructures Due to Imperfections, Nanoscale 13, 10010 (2021).

[40] Y. Guo, Z. Zhang, M. Nomura, S. Volz, and M. Wang, Phonon Vortex Dynamics in Graphene Ribbon by Solving Boltzmann Transport Equation with Ab Initio Scattering Rates, Int. J. Heat Mass Transf. 169, 120981 (2021).

[39] Y. Guo, M. Bescond, Z. Zhang, S. Xiong, K. Hirakawa, M. Nomura, and S. Volz, Thermal Conductivity Minimum of Graded Superlattices Due to Phonon Localization, APL Mater. 9, 091104 (2021).

[38] Y. Guo, Z. Zhang, M. Bescond, S. Xiong, M. Nomura, and S. Volz, Anharmonic Phonon-Phonon Scattering at the Interface between Two Solids by Nonequilibrium Green’s Function Formalism, Phys. Rev. B 103, 174306 (2021).

2020 - 2021

[37] H. Wang*, M. Narasaki*, Z. Zhang*, K. Takahashi, J. Chen, and X. Zhang, Ultra-Strong Stability of Double-Sided Fluorinated Monolayer Graphene and Its Electrical Property Characterization, Sci. Rep. 10, 17562 (2020).

[36] Z. Zhang, Y. Ouyang, Y. Cheng, J. Chen, N. Li, and G. Zhang, Size-Dependent Phononic Thermal Transport in Low-Dimensional Nanomaterials, Phys. Rep. 860, 1 (2020). Highly cited from Web of Science

[35] Z. Zhang, S. Hu, Q. Xi, T. Nakayama, S. Volz, J. Chen, and B. Li, Tunable Phonon Nanocapacitor Built by Carbon Schwarzite Based Host-Guest System, Phys. Rev. B 101, 081402(R) (2020).

[34] Y. Guo, M. Bescond, Z. Zhang, M. Luisier, M. Nomura, and S. Volz, Quantum Mechanical Modeling of Anharmonic Phonon-Phonon Scattering in Nanostructures, Phys. Rev. B 102, 195412 (2020).

[33] Z. Zhang, Y. Ouyang, Y. Guo, T. Nakayama, M. Nomura, S. Volz, and J. Chen, Hydrodynamic Phonon Transport in Bulk Crystalline Polymers, Phys. Rev. B 102, 195302 (2020).

[32] P. Jiang, S. Hu, Y. Ouyang, W. Ren, C. Yu, Z. Zhang, and J. Chen, Remarkable Thermal Rectification in Pristine and Symmetric Monolayer Graphene Enabled by Asymmetric Thermal Contact, J. Appl. Phys. 127, 235101 (2020).

[31] W. Ren, Z. Zhang, C. Chen, Y. Ouyang, N. Li, and J. Chen, Phononic Thermal Transport in Yttrium Hydrides Allotropes, Front. Mater. 7, 404 (2020).

[30] Y. Ouyang, Z. Zhang, C. Yu, J. He, G. Yan, and J. Chen, Accuracy of Machine Learning Potential for Predictions of Multiple-Target Physical Properties, Chinese Phys. Lett. 37, 126301 (2020).

[29] Z. Zhang, Y. Ouyang, J. Chen, and S. Volz, A Phononic Rectifier Based on Carbon Schwarzite Host--Guest System, Chinese Phys. B 29, 124402 (2020).

[28] J. Wang*, Z. Zhang*, R. Shi, B. N. Chandrashekar, N. Shen, H. Song, N. Wang, J. Chen, and C. Cheng, Impact of Nanoscale Roughness on Heat Transport across the Solid–Solid Interface, Adv. Mater. Interfaces 7, 1901582 (2020).

2017 - 2019

[27] Y. Ouyang, Z. Zhang, Q. Xi, P. Jiang, W. Ren, N. Li, J. Zhou, and J. Chen, Effect of Boundary Chain Folding on Thermal Conductivity of Lamellar Amorphous Polyethylene, RSC Adv. 9, 33549 (2019).

[26] D. Liu, X. Chen, Y. Yan, Z. Zhang, Z. Jin, K. Yi, C. Zhang, Y. Zheng, Y. Wang, J. Yang, and others, Conformal Hexagonal-Boron Nitride Dielectric Interface for Tungsten Diselenide Devices with Improved Mobility and Thermal Dissipation, Nat. Commun. 10, 1 (2019).

[25] S. Hu, Z. Zhang, P. Jiang, W. Ren, C. Yu, J. Shiomi, and J. Chen, Disorder Limits the Coherent Phonon Transport in Two-Dimensional Phononic Crystal Structures, Nanoscale 11, 11839 (2019).

[24] Y. Ouyang, Z. Zhang, D. Li, J. Chen, and G. Zhang, Emerging Theory, Materials, and Screening Methods: New Opportunities for Promoting Thermoelectric Performance, Ann. Phys. 531, 1800437 (2019).

[23] N. Wang, M. K. Samani, H. Li, L. Dong, Z. Zhang, P. Su, S. Chen, J. Chen, S. Huang, G. Yuan, X. Xu, B. Li, K. Leifer, L. Ye, and J. Liu, Tailoring the Thermal and Mechanical Properties of Graphene Film by Structural Engineering, Small 14, 1801346 (2018).

[22] Q. Xi, Z. Zhang, T. Nakayama, J. Chen, J. Zhou, and B. Li, Off-Center Rattling Triggers High-Temperature Thermal Transport in Thermoelectric Clathrates: Nonperturbative Approach, Phys. Rev. B 97, 224308 (2018).

[21] S. Hu*, Z. Zhang*, P. Jiang, J. Chen, S. Volz, M. Nomura, and B. Li, Randomness-Induced Phonon Localization in Graphene Heat Conduction, J. Phys. Chem. Lett. 9, 3959 (2018).

[20] C. Chen*, Z. Zhang*, and J. Chen, Revisit to the Impacts of Rattlers on Thermal Conductivity of Clathrates, Front. Energy Res. 6, 34 (2018).

[19] S. Hu, Z. Zhang, Z. Wang, K. Zeng, Y. Cheng, J. Chen, and G. Zhang, Significant Reduction in Thermal Conductivity of Lithium Cobalt Oxide Cathode Upon Charging: Propagating and Non-Propagating Thermal Energy Transport, ES Energy & Environment.[18] Z. Zhang and J. Chen, Thermal Conductivity of Nanowires, Chinese Phys. B 27, 035101 (2018).

[17] Y. Ma*, Z. Zhang*, J. Chen, K. Sääskilahti, S. Volz, and J. Chen, Ordered Water Layers by Interfacial Charge Decoration Leading to an Ultra-Low Kapitza Resistance between Graphene and Water, Carbon N. Y. 135, 263 (2018).

[16] A. Aiyiti*, Z. Zhang*, B. Chen, S. Hu, J. Chen, X. Xu, and B. Li, Thermal Rectification in Y-Junction Carbon Nanotube Bundle, Carbon N. Y. 140, 673 (2018).

[15] Z. Zhang, S. Hu, T. Nakayama, J. Chen, and B. Li, Reducing Lattice Thermal Conductivity in Schwarzites via Engineering the Hybridized Phonon Modes, Carbon N. Y. 139, 289 (2018).

[14] Q. Xi, Z. Zhang, J. Chen, J. Zhou, T. Nakayama, and B. Li, Hopping Processes Explain Linear Rise in Temperature of Thermal Conductivity in Thermoelectric Clathrates with Off-Center Guest Atoms, Phys. Rev. B 96, 064306 (2017).

[13] Z. Zhang, S. Hu, J. Chen, and B. Li, Hexagonal Boron Nitride: A Promising Substrate for Graphene with High Heat Dissipation, Nanotechnology 28, 225704 (2017).

[12] Z. Zhang, J. Chen, and B. Li, Negative Gaussian Curvature Induces Significant Suppression of Thermal Conduction in Carbon Crystals, Nanoscale 9, 14208 (2017).

[11] H. Zhang, Y. Xie, Z. Zhang, C. Zhong, Y. Li, Z. Chen, and Y. Chen, Dirac Nodal Lines and Tilted Semi-Dirac Cones Coexisting in a Striped Boron Sheet, J. Phys. Chem. Lett. 8, 1707 (2017).

[10] H. Zhang, Y. Xie, C. Zhong, Z. Zhang, and Y. Chen, Tunable Type-I and Type-II Dirac Fermions in Graphene with Nitrogen Line Defects, J. Phys. Chem. C 121, 12476 (2017).

[9]  Z. Zhang, Y. Xie, Y. Ouyang, and Y. Chen, A Systematic Investigation of Thermal Conductivities of Transition Metal Dichalcogenides, Int. J. Heat Mass Transf. 108, 417 (2017).

[8]  张忠卫 and 陈杰, 二维材料中的热传导, 中国材料进展 36, 141 (2017).

Before 2016

[7]  Z. Zhang, Y. Xie, Q. Peng, and Y. Chen, A Theoretical Prediction of Super High-Performance Thermoelectric Materials Based on MoS2/WS2 Hybrid Nanoribbons, Sci. Rep. 6, 21639 (2016).

[6]  Z. Zhang, Y. Xie, Q. Peng, and Y. Chen, Phonon Transport in Single-Layer Boron Nanoribbons, Nanotechnology 27, 445703 (2016).

[5]  Y. Gao, Y. Chen, C. Zhong, Z. Zhang, Y. Xie, and S. Zhang, Electron and Phonon Properties and Gas Storage in Carbon Honeycombs, Nanoscale 8, 12863 (2016).

[4]  Y. Ouyang, Y. Xie, Z. Zhang, Q. Peng, and Y. Chen, Very High Thermoelectric Figure of Merit Found in Hybrid Transition-Metal-Dichalcogenides, J. Appl. Phys. 120, 235109 (2016).

[3]  Z. Zhang, Y. Chen, Y. Xie, and S. Zhang, Transition of Thermal Rectification in Silicon Nanocones, Appl. Therm. Eng. 102, 1075 (2016).

[2]  Z. Zhang, Y. Xie, Q. Peng, and Y. Chen, Geometry, Stability and Thermal Transport of Hydrogenated Graphene Nanoquilts, Solid State Commun. 213–214, 31 (2015).

[1]  Z. Zhang, Y. Xie, Q. Peng, and Y. Chen, Thermal Transport in MoS2/Graphene Hybrid Nanosheets, Nanotechnology 26, 375402 (2015).

bottom of page